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Abstract— Inferring the affordance of an object and grasping
it in a task-oriented manner is crucial for robots to suc-
cessfully complete manipulation tasks. Affordance indicates
where and how to grasp an object by taking its functionality
into account, serving as the foundation for effective task-
oriented grasping. However, current task-oriented methods
often depend on extensive training data that is confined to
specific tasks and objects, making it difficult to generalize to
novel objects and complex scenes. In this paper, we introduce
AffordGrasp, a novel open-vocabulary grasping framework that
leverages the reasoning capabilities of vision-language models
(VLMs) for in-context affordance reasoning. Unlike existing
methods that rely on explicit task and object specifications, our
approach infers tasks directly from implicit user instructions,
enabling more intuitive and seamless human-robot interaction
in everyday scenarios. Building on the reasoning outcomes,
our framework identifies task-relevant objects and grounds
their part-level affordances using a visual grounding module.
This allows us to generate task-oriented grasp poses precisely
within the affordance regions of the object, ensuring both
functional and context-aware robotic manipulation. Extensive
experiments demonstrate that AffordGrasp achieves state-of-
the-art performance in both simulation and real-world scenar-
ios, highlighting the effectiveness of our method. We believe
our approach advances robotic manipulation techniques and
contributes to the broader field of embodied AI. Project website:
https://eqcy.github.io/affordgrasp/.

I. INTRODUCTION

For robots assisting in daily tasks, understanding object
affordances and selecting grasp areas and poses are vital
for effective execution. For example, when pouring water,
a robot must identify a cup’s handle as the graspable region
to ensure success. This highlights the need for task-oriented
grasping based on affordances, akin to how humans intu-
itively interact with objects—like holding a spoon or racket
handle—and generalize to new objects. However, enabling
robots to replicate this ability is challenging, particularly
in accurately identifying affordances without extensive task-
specific training. Overcoming this is key to developing robots
that adapt to diverse real-world scenarios.

Existing methods [1], [2], [3], [4], [5], [6] transfer af-
fordances [1], [2], [3] or task-oriented grasps [4], [5], [6]
from training data to test objects by constructing affordance
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Fig. 1. Compared to existing task-oriented grasping methods, our approach
offers three key advantages: (1) leveraging VLMs for affordance reasoning,
enabling better understanding of user intentions from implicit language
instructions and visual scene observations; (2) a training-free pipeline, elim-
inating the need for annotated data to train task-oriented grasp evaluators;
and (3) the ability to handle cluttered scenes, rather than being limited to
single-object grasping.

memories or learning task-specific skills. These approaches
retrieve semantically and geometrically similar objects to
transfer knowledge from seen to unseen instances. However,
their reliance on time-consuming retrieval processes and
limited affordance memory scales hinders their effectiveness
in open-vocabulary scenarios with novel tasks and objects.

Recent research shows growing interest in open-
vocabulary grasping [7], [8], [9], [10]. These methods gener-
ate grasp poses by jointly training vision-language grasping
frameworks [7], [8], [9] or leveraging the visual grounding
abilities of VLMs [10]. However, they focus solely on
grasping entire objects, neglecting task-specific affordances.
For finer-grained grasping, [11] uses open-vocabulary object
detection [12] and part segmentation [13] to perform part-
level grasps based on user’s part prompts. Other works [14],
[15] employ Large Language Models (LLMs) to reason
about object parts or affordances from language instructions,
localizing regions via VLMs. However, existing methods
often require explicit object names in prompts and struggle
with implicit instructions (e.g., “I am thirsty”) without visual
scene context, lacking the ability to interpret tasks and object
functionalities in complex open-vocabulary environments.

https://eqcy.github.io/affordgrasp/


Although existing task-oriented or open-vocabulary grasp-
ing methods perform well in some scenarios, inferring ap-
propriate open-vocabulary task-oriented grasps in cluttered
environments remains challenging. We summarize the key
difficulties as follows: (1) Ambiguity in user instructions.
Existing methods often require explicit object names and
tasks, lacking flexibility. In practice, user instructions fre-
quently contain implicit goals, demanding deeper semantic
understanding. (2) Training dependency. Some methods
[5], [6] use LLMs to infer object properties and build
task-object similarity, yet still rely on annotated data to
train task-oriented grasp evaluators for generating desired
poses. (3) Cluttered scenes. Current task-oriented grasping
methods typically focus on single-object scenarios. Cluttered
environments with multiple objects increase the complexity
of identifying target objects, posing additional challenges.

To address the aforementioned challenges, we propose
AffordGrasp, a novel affordance reasoning framework for
open-vocabulary task-oriented grasping. As illustrated in Fig.
1, our method offers three key advantages over existing
approaches. First, we tackle ambiguous user instructions
by leveraging Vision-Language Models (VLMs) to reason
about affordances from both language and visual inputs. By
utilizing the inherent reasoning capabilities of VLMs, we
establish relationships among tasks, objects, and affordances
in complex scenes. Second, based on the affordance reason-
ing results, the target object and its visual affordance are
grounded using VLMs for grasp generation, eliminating the
need for additional training data. Finally, with a deep under-
standing of tasks and affordances, our method outperforms
existing approaches in cluttered scenes, enabling robust and
context-aware grasping. The main contributions of our work
are as follows:

• We introduce AffordGrasp, a novel framework for open-
vocabulary task-oriented grasping in cluttered scenes.

• Specifically, we propose an in-context affordance rea-
soning module that leverages the reasoning capabili-
ties of Vision-Language Models (VLMs). This module
extracts explicit tasks from implicit user instructions
and infers object affordances from visual observations,
significantly enhancing the understanding of tasks, ob-
jects, and their affordances through the integration of
language and visual inputs.

• Importantly, our method is entirely open-vocabulary,
requiring only arbitrary user instructions and RGB-D
images. It functions without the need for additional
training or fine-tuning, which makes it highly flexible
and scalable.

• We validate the effectiveness of our approach through
extensive experiments in both simulation and real-world
robotic scenarios, demonstrating its robustness and prac-
tical applicability.

II. RELATED WORK
A. Visual Affordance Grounding

Visual Affordance Grounding involves identifying and
localizing specific areas of an object in an image that enable

potential interactions. Researchers have explored various
approaches to learn affordances, including annotated images
[16], demonstration videos [17], [1], and cross-modal inputs
[18]. Methods like Robo-ABC [2] and RAM [3] employ
semantic correspondence and retrieval-based paradigms to
generalize affordances across objects and domains, utilizing
diverse data sources for zero-shot transfer. Additionally,
GLOVER [19] fine-tunes a multi-modal LLM to predict
visual affordances. However, these approaches often require
varying degrees of data training, limiting their applicability
in fully open-vocabulary scenarios.

B. Task-Oriented Grasping

Task-Oriented Grasping focuses on grasping specific ob-
ject parts based on task constraints, enabling robots to
perform subsequent manipulations. Traditional approaches
rely on training with large-scale annotated datasets [20], [21].
To enhance generalization to novel objects, methods like
GraspGPT [5] and FoundationGrasp [6] leverage the open-
ended semantic knowledge of LLMs to bridge connections
between dataset objects and novel ones, though they still
depend on annotated datasets for training. LERF-TOGO [22]
constructs a Language-Embedded Radiance Field (LERF)
[23] and generates 3D relevancy heatmaps using DINO
features [24] for zero-shot task-oriented grasping. However,
it requires time-consuming multi-view image capture for 3D
rendering and explicit object part specifications. ShapeGrasp
[25] employs geometric decomposition, including attributes
and spatial relationships, to grasp novel objects. Despite
these advancements, existing methods primarily focus on
single-object grasping, limiting their effectiveness in clut-
tered environments.

C. Robotic Grasping with LLMs and VLMs

The integration of LLMs and VLMs into robotic grasping
has recently garnered significant interest. Approaches like
LAN-Grasp [14] leverage LLMs to identify graspable object
parts, while OVAL-Prompt [15] formulates this as affordance
grounding. However, these methods rely exclusively on
LLMs to infer grasping positions from language instructions,
lacking integration with visual context. Consequently, they
depend on explicit instructions and struggle in cluttered envi-
ronments without advanced reasoning. Recent advancements
[26], [27], [28] emphasize the strong contextual reason-
ing capabilities of VLMs. For example, ThinkGrasp [28]
introduces a vision-language grasping system for cluttered
scenes. While ThinkGrasp represents progress in clutter
handling, it focuses on object-level grasping and overlooks
task constraints and affordances, which are essential for fine-
grained, task-oriented grasping.

III. METHOD

In this section, we introduce AffordGrasp, a novel frame-
work for open-vocabulary task-oriented grasping. As illus-
trated in Fig. 2, our method begins by interpreting user in-
structions through a Vision-Language Model (VLM), which
decomposes the task into three key steps: analyzing the
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Fig. 2. Overall Framework of AffordGrasp. The framework processes user instructions and RGB-D scene observations to achieve open-vocabulary
task-oriented grasping in clutter. We leverage GPT-4o [29] for in-context affordance reasoning, decomposing the process into three steps: (1) Extracting the
task goal and functional requirements from implicit user instructions (e.g., “I want to scoop something”). (2) Identifying the most task-relevant object in
the RGB image (e.g., a wooden spoon). (3) Decomposing the object into functional parts and selecting the optimal graspable part (e.g., the handle) based
on its affordances. Based on the reasoning results, a visual affordance grounding module grounds the inferred object and part affordances into pixel-level
masks. With the affordance mask and RGB-D images, we employ AnyGrasp [30] to generate task-oriented 6D grasp poses on the target part.

task goal, identifying the most relevant object, and reason-
ing about the optimal graspable part based on affordances.
This reasoning process is grounded into pixel-level masks
using a visual grounding module, which segments the ob-
ject and its functional parts in the RGB image. Leverag-
ing the RGB-D image and affordance mask, we employ
AnyGrasp [30] to generate 6D grasp poses, aligning the
affordance center to select the optimal grasp. By integrating
language-guided reasoning, visual grounding, and geometry-
aware grasp synthesis, AffordGrasp enables robust and in-
terpretable task-oriented grasping in cluttered environments,
effectively bridging high-level task semantics with low-level
robotic execution.

A. In-Context Affordance Reasoning

Inferring affordances for task-oriented grasping in clut-
tered environments is challenging, as it requires interpreting
user instructions, identifying task-relevant objects, and rea-
soning about functional parts and affordances. To address
this, we propose an in-context affordance reasoning mod-
ule powered by Vision-Language Models (VLMs), which
decomposes the problem into three key steps: (1) task
analysis, (2) relevant object identification, and (3) part and
affordance reasoning. Specifically, we leverage the GPT-4o
[29] model to analyze the underlying intention and implicit
requirements of the task from user instructions, and then
establish relationships among tasks, objects, and affordances
in an in-context manner using visual observations.

Task Analysis. Given a language instruction L and an
RGB image of the scene I, we first analyze the user
instruction using GPT-4o to extract the explicit task T .

Relevant Object Identification. Based on the require-
ments of the explicit task T , the object O most relevant
to the task is identified in the image.

Part and Affordance Reasoning. The selected object O
is decomposed into functional parts P = {p1, p2, . . . , pn},
and the corresponding affordances A = {a1, a2, . . . , an} of
each part are inferred. The optimal part p∗ and its affordance
a∗ are selected based on their suitability for the task. The
entire reasoning process can be formulated as follows:

T , O, p∗, a∗ = GPT-4o(L, I). (1)

Fig. 3 illustrates the prompt for the in-context affordance
reasoning module, including an example of input and output.
This prompt guides the Vision-Language Model (VLM)
through a step-by-step reasoning process: (1) understanding
user intent, (2) identifying the most relevant object, and (3)
locating the optimal graspable part based on affordances.
This method enhances interpretability and ensures task-
oriented grasp generation. Our approach effectively handles
complex scenarios with multiple objects, enabling the robot
to prioritize relevant items while ignoring distractions. The
reasoning output is structured as task, object, object part, and
affordance, serving as input for subsequent visual affordance
grounding and grasp pose generation.



Prompt for In-Context Affordance Reasoning

“I need to tighten screws, please help me to choose the right tool.”

Output Reasoning Process:
Task Analysis: The task is to tighten screws, which requires a tool 
that can apply torque to the screw head. This typically involves using 
a screwdriver or a similar tool designed for this purpose.
Object Identification: The most suitable object for this task is the 
screwdriver, as it is specifically designed to fit into the head of a 
screw and apply the necessary torque to tighten it.
Part Selection: The handle of the screwdriver is the part that should 
be grasped. It is designed to be held by a human hand or a robotic 
gripper, providing the necessary leverage to turn the screwdriver.
Affordance Reasoning: The handle of the screwdriver is cylindrical 
and textured, which makes it easy to grasp securely. Its shape allows 
for a firm grip, enabling the application of rotational force needed to 
tighten screws effectively.

    You are a highly capable robotic assistant designed to perform grasping tasks in 
real-world environments. 
    Your expertise lies in analyzing user instructions, identifying task-relevant objects, 
and reasoning about the appropriate grasp affordances to execute the task 
successfully.

An Example of In-Context Affordance Reasoning 

    When given a task, follow these steps to provide a detailed reasoning process:
Step 1. Task analysis: Analyze the user instruction to understand the underlying 
intention and implicit requirements of the task.
Step 2. Relevant object identification: From the given image, select the object that 
is most relevant to the task.
Step 3. Part and affordance Reasoning: Decompose the object into several main 
parts, and list the affordances corresponding each part. Then identify which part of 
the object can be grasped by the robot to complete the task. Explain why the 
selected part is suitable for grasping based on its physical properties and the task 
requirements.

    The reasoning process should be given as follows:
Task Analysis: [Explain the task goal and required actions.]
Object Identification: [Explain why the selected object is the most suitable for the 
task.]
Part Selection: [Explain why the chosen part is graspable and relevant to the task.]
Affordance Reasoning: [Describe the physical properties of the part that make it 
suitable for grasping.]

    Please use common, everyday object names that fit naturally into the context. 
Choose the most basic and concise term to describe the object part.  The output 
should be in the following format:
Task: [phrase]
Object: [noun]
Object Part: [noun]
Affordance: [verb]

Output Affordance Reasoning Results:
Task: Tighten screws
Object: Screwdriver
Object Part: Handle
Affordance: Grasp

Fig. 3. The prompt for in-context affordance reasoning is designed, and an example is provided for illustration.

B. Visual Affordance Grounding

To ground the object part and corresponding affordance
on the task-relevant object, we propose a visual affordance
grounding module. Unlike traditional methods trained on
closed-set semantic concepts [16], [17], our approach lever-
ages the open-vocabulary part segmentation method VLPart
[13], making it open-ended. The module takes as input
the RGB image I and the affordance reasoning results
{O, p∗, a∗}, and outputs an object bounding box with an
affordance mask on the object part.

The process is divided into two steps:

1) Object Localization: VLPart locates the object bound-
ing box BO and generates a masked image MBO :

BO = VLPart(I, O), (2)

MBO (i, j) =

{
I(i, j) if (i, j) ∈ BO,

0 if (i, j) /∈ BO.
(3)

2) Affordance Mask Prediction: The affordance mask
Mp∗ is predicted on the masked image using the
optimal part p∗ and affordance a∗:

Mp∗ = VLPart(MBO , p
∗, a∗). (4)

This two-step approach effectively eliminates interference
from other objects in cluttered scenes.

C. Grasp Pose Generation

We employ AnyGrasp [30] to generate 6D grasp poses
based on visual affordance. First, the depth image is con-
verted into a partial-view point cloud using camera intrinsics.
The affordance mask from the visual affordance grounding
module is then used to filter the point cloud, enabling task-
oriented grasp generation. This strategy constrains the grasp
generation process and effectively avoids interference from
surrounding objects.

The point cloud of the object part with grasp affordance
is processed by AnyGrasp to generate grasp candidates.
AnyGrasp is a 6D grasp generation model trained on a large-
scale dataset, which produces grasp poses from partial-view
point cloud. Each grasp pose g is represented as:

g = [R, t, w], (5)

where R ∈ R3×3 is the rotation matrix, t ∈ R3×1 is the
translation vector, and w ∈ R is the minimum gripper width.
The optimal grasp pose g∗ is selected from candidates G =
{g1, g2, . . . , gn} using:

g∗ = argmax
g∈G

(
score(g)

∥t(g)− c∥2

)
, (6)

where score(g) and t(g) are the confidence score and trans-
lation vector of g, respectively. This prioritizes grasps closer
to the affordance mask centroid c = [x, y, z] with higher
confidence scores, ensuring alignment with the affordance’s
geometric center for improved stability.



TABLE I
SIMULATION RESULTS FOR VARIOUS METHODS IN SINGLE OBJECT GRASPING.

Methods Cup Spoon Hammer Bowl Screwdriver Scissors Wine Glass Average GSR

GraspNet [31] 0.68 0.42 0.60 0.84 0.84 0.14 0.44 0.57
ThinkGrasp [28] 0.70 0.92 0.86 0.90 0.94 0.48 0.46 0.75
AffordGrasp (Ours) 0.92 0.98 0.88 0.88 1.00 0.62 0.66 0.85

TABLE II
SIMULATION RESULTS OF VARIOUS METHODS FOR GRASPING IN CLUTTER.

Methods Cup Spoon Hammer Bowl Screwdriver Scissors Wine Glass Average GSR

ThinkGrasp [28] 0.70 0.88 0.76 0.96 0.16 0.30 0.00 0.54
AffordGrasp (Ours) 0.84 0.92 0.90 0.94 0.76 0.50 0.52 0.77

I want to drink water. I want to drink soup. I want to hammer nails. I want to drink some wine. I want to tighten screws.

I need to hold my food. I need to cut something. I want to eat vegetables. I am craving some meat. I need a fruit.

Task: Drink water

Object: Mug

Object Part: Handle

Affordance: Grasp
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Object: Spoon

Object Part: Handle

Affordance: Hold

Task: Hammer nails

Object: Hammer

Object Part: Handle
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Task: Drink wine
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Task: Tighten screws
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Task: Hold food

Object: Bowl

Object Part: Rim

Affordance: Grasp

Task: Cut something

Object: Scissors

Object Part: Handle

Affordance: Grasp

Task: Eat vegetables

Object: Carrot

Object Part: Middle

Affordance: Hold

Task: Pick up the meat

Object: Chicken Leg

Object Part: Bone

Affordance: Grasp 

Task: Grasp a fruit

Object: Mango

Object Part: Body

Affordance: Grasp

Fig. 4. Simulation Cases of Grasping in Clutter: The affordances of the target object are indicated with red stars.

IV. EXPERIMENT

A. Experiment Setup

Implementation Details. All experiments are conducted
on a workstation with a 24GB GeForce RTX 4090 GPU. The
simulation environment is built in PyBullet [32], featuring
a UR5 arm with a ROBOTIQ-85 gripper and an Intel
RealSense L515 camera. Raw images are resized to 224×224
pixels for segmentation. Our real-world setup includes a UR5
arm with an RS-485 gripper and an Intel RealSense L515
camera, calibrated in an eye-to-hand configuration. RGB-
D images are captured at 1280 × 720 resolution. GraspNet
[31] is used for grasp pose generation in simulations, while
AnyGrasp [30] is employed for real-world experiments.

Baseline Methods. We compare our method with Grasp-
Net [31] and AnyGrasp [30], both 6D grasping methods
trained on large-scale real-world datasets; RAM [3], which
generates 2D affordance maps and lifts them to 3D for

manipulation; and ThinkGrasp [28], a vision-language grasp-
ing system leveraging GPT-4o for reasoning in cluttered
environments.

Evaluation Metrics. We use Grasp Success Rate (GSR),
calculated as the percentage of successful grasps relative
to total grasp executions, to evaluate performance in both
simulation and real-world experiments.

B. Simulation Results

We compare our method with GraspNet [31] and
ThinkGrasp [28] in simulation, using GraspNet for grasp
generation. Experiments involve two tasks: Grasping Single
Object and Grasping in Clutter. Each case includes 50 runs
with identical scene settings for all methods.

Grasping Single Object involves placing objects in iso-
lation on a table. Results in Tab. I show our method achieves
an average grasp success rate (GSR) of 0.85, outperforming
GraspNet and ThinkGrasp. For simple objects (e.g., spoon,



TABLE III
COMPARISON RESULTS OF VARIOUS METHODS IN REAL-WORLD EXPERIMENTS.

Methods Bottle Mug Spatula Spoon Knife Pan Kettle Screwdriver Average GSR

RAM [3] 6/10 1/10 0/10 0/10 0/10 0/10 0/10 0/10 0.14
AnyGrasp [30] 8/10 3/10 7/10 6/10 10/10 7/10 2/10 6/10 0.61
ThinkGrasp [28] 8/10 6/10 5/10 7/10 9/10 7/10 7/10 9/10 0.73
AffordGrasp (Ours) 8/10 8/10 9/10 8/10 10/10 9/10 6/10 8/10 0.83
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please help me to choose 

the right tool.

I want to cook pancakes, 

please help me to choose 

the right cookware.

I want to boil some water. I want to play a sport.

Task: Flip
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Fig. 5. Real-world Examples of Grasping in Clutter: The visualization of affordance grounding and task-oriented grasp generation are provided.

hammer, bowl), our method matches ThinkGrasp’s perfor-
mance. For challenging objects like scissors and wine glass,
our method achieves GSRs of 0.62 and 0.66, surpassing
GraspNet by 0.48 and 0.22, and ThinkGrasp by 0.14 and
0.20, respectively. This demonstrates our method’s adaptabil-
ity to complex geometries.

Grasping in Clutter involves randomly arranged objects,
with target affordances marked by red stars (Fig. 4). Quan-
titative results in Tab. II show our method achieves an aver-
age GSR of 0.77, significantly outperforming ThinkGrasp’s
0.54. Our method excels with cups, spoons, hammers, and
screwdrivers. For screwdrivers, ThinkGrasp obtains only 0.16
GSR, while our method achieves 0.76. ThinkGrasp also
struggles with wine glasses, as it prioritizes the most salient
object, leading to failures even when the target is visible.

C. Real-world Results

We evaluate our method on a diverse set of objects in real-
world task-oriented grasping in clutter. Results in Tab. III
show our method achieves the highest average grasp success
rate (GSR) of 0.83, outperforming RAM, AnyGrasp, and

ThinkGrasp. For simple objects (e.g., bottle), all methods
achieve high GSRs. However, RAM struggles with com-
plex geometries due to limited affordance memory, while
ThinkGrasp shows competitive performance on specific ob-
jects like kettles and screwdrivers. Our method consistently
excels across a broader range of objects, achieving GSRs of
0.80, 0.90, and 0.90 for mugs, spatulas, and pans, respec-
tively, demonstrating robustness across varying shapes and
functionalities.

Visualizations of affordance grounding and task-oriented
grasp generation are shown in Fig. 5. Relevant objects and
affordance masks are labeled with cyan bounding boxes and
masks in RGB images. Grasp poses are generated on point
clouds corresponding to affordance masks and visualized on
the object point cloud. As shown in Fig. 5, grasp poses
are densely distributed on object parts identified with grasp
affordances by GPT-4o reasoning. The optimal grasp pose is
selected using the filtering strategy detailed in Sec. III C for
robotic grasp execution.



(a) ThinkGrasp (b) AnyGrasp (c) AffordGrasp (Ours)

Grasp 

Candidates

Optimal 

Grasp

Fig. 6. The case study of mug in real-world experiments.

D. Case Study

To demonstrate the advantages of our method, we present
a case study in Fig. 6. The first row shows grasp pose candi-
dates, while the second row depicts the optimal grasp poses
selected by different methods. ThinkGrasp selects grasps
near the center of the cropped image due to its 3 × 3 grid
strategy, which divides the image into numbered regions (1:
top-left, 9: bottom-right). However, this often fails for objects
with curved rims (e.g., mugs), as center-based grasps lack
stability due to insufficient contact points or improper force
distribution. Similarly, AnyGrasp generates arbitrary grasps
without affordance reasoning, leading to unreliable task-
oriented grasping (Fig. 6(b) and (c)). In contrast, our method
integrates affordance reasoning and fine-grained grasp gen-
eration, producing precise and stable grasps. This highlights
the importance of affordance reasoning and demonstrates the
effectiveness of our method in real-world applications.

V. CONCLUSIONS
This paper introduces AffordGrasp, a novel open-

vocabulary task-oriented grasping framework that leverages
the reasoning capabilities of VLMs to infer object affor-
dances and generate task-specific grasps in cluttered environ-
ments. By integrating in-context affordance reasoning and
visual affordance grounding, our method effectively inter-
prets user instructions, identifies task-relevant objects, and
grounds part-level affordances for precise grasp generation.
Extensive experiments in simulation and real-world scenarios
demonstrate the effectiveness of our approach, outperforming
existing methods in handling novel objects and complex
scenes without requiring additional training data.
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